Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Deliv Transl Res ; 13(4): 1022-1034, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36585558

RESUMEN

Topical preparations of hydrocortisone can be used for the anti-inflammatory treatment of the female genital area. Although the drug is a low-strength corticosteroid, systemic absorption and distribution of the drug are the most common safety risks associated with this therapy. In the current investigation, we elucidate the physicochemical properties of lipid-based drug carrier systems that govern the local bioavailability of hydrocortisone for intravaginal administration. For this purpose, we compared various proliposome formulations with a commercial cream. Depending on the availability of physiological acceptors, encapsulation and drug release from the lipid phase were found to be the most important drivers of drug bioavailability. The high permeability of hydrocortisone leads to rapid transport of the drug across the mucosal cell layer as indicated by experiments using HEC-1-A and CaSki cell monolayer models. Under sink conditions, differences in the release from the liposomes as determined in the Dispersion Releaser were almost negligible. However, under non-sink conditions, the drug release plateaued at levels corresponding to the encapsulation efficiency. After redispersion, all liposomal formulations performed better than the commercial drug product indicating that the encapsulation into the lipid phase is the main driver sustaining the release.


Asunto(s)
Hidrocortisona , Liposomas , Femenino , Humanos , Embarazo , Liposomas/química , Portadores de Fármacos/química , Lípidos/química , Parto Obstétrico , Tamaño de la Partícula
2.
Pharmaceutics ; 13(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959289

RESUMEN

Currently, a wide variety of complex non-oral dosage forms are entering the global healthcare market. Although many assays have been described in recent research, harmonized procedures and standards for testing their in vitro performance remain widely unexplored. Among others, dialysis-based techniques such as the Pharma Test Dispersion Releaser are developed for testing the release of drugs from nanoparticles, liposomes, or extracellular vesicle preparations. Here, we provide advanced strategies and practical advice for the development and validation of dialysis-based techniques, including documentation, analysis, and interpretation of the raw data. For this purpose, key parameters of the release assay, including the hydrodynamics in the device at different stirring rates, the selectivity for particles and molecules, as well as the effect of excipients on drug permeation were investigated. At the highest stirring rate, a more than twofold increase in the membrane permeation rate (from 0.99 × 10-3 to 2.17 × 10-3 cm2/h) was observed. Additionally, we designed a novel computer model to identify important quality parameters of the dialysis experiment and to calculate error-corrected release profiles. Two hydrophilic creams of diclofenac, Voltaren® Emulgel, and Olfen® gel, were tested and provide first-hand evidence of the robustness of the assay in the presence of semisolid dosage forms.

3.
Adv Drug Deliv Rev ; 179: 113829, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34174332

RESUMEN

For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Investigación Biomédica/métodos , Biología Computacional/métodos , Vesículas Extracelulares/metabolismo , Humanos , Técnicas In Vitro
4.
Eur J Pharm Biopharm ; 153: 257-272, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32589926

RESUMEN

Over the years, a wide variety of nanomedicines has entered global markets, providing a blueprint for the emerging generics industry. They are characterized by a unique pharmacokinetic behavior difficult to explain with conventional methods. In the present approach a physiologically-based nanocarrier biopharmaceutics model has been developed. Providing a compartmental framework of the distribution and elimination of nanocarrier delivery systems, this model was applied to human clinical data of the drug products Doxil®, Myocet®, and AmBisome® as well as to the formulation prototypes Foslip® and NanoBB-1-Dox. A parameter optimization by differential evolution led to an accurate representation of the human data (AAFE < 2). For each formulation, separate half-lives for the carrier and the free drug as well as the drug release were calculated from the total drug concentration-time profile. In this context, a static in vitro set-up and the dynamic in vivo situation with a continuous infusion and accumulation of the carrier were simulated. For Doxil®, a total drug release ranging from 0.01 to 22.1% was determined. With the time of release exceeding the elimination time of the carrier, the major fraction was available for drug targeting. NanoBB-1-Dox released 76.2-77.8% of the drug into the plasma, leading to an accumulated fraction of approximately 20%. The mean residence time of encapsulated doxorubicin was 128 h for Doxil® and 0.784 h for NanoBB-1-Dox, giving the stealth liposomes more time to accumulate at the intended target site. For all other formulations, Myocet®, AmBisome®, and Foslip®, the major fraction of the dose was released into the blood plasma without being available for targeted delivery.


Asunto(s)
Portadores de Fármacos/química , Liberación de Fármacos/fisiología , Nanopartículas/química , Anfotericina B/química , Anfotericina B/metabolismo , Biofarmacia/métodos , Química Farmacéutica/métodos , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Semivida , Humanos , Liposomas/química , Polietilenglicoles/química , Polietilenglicoles/metabolismo
5.
Eur J Pharm Biopharm ; 115: 73-83, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28213179

RESUMEN

The dispersion releaser (DR) is a dialysis-based setup for the analysis of the drug release from nanosized drug carriers. It is mounted into dissolution apparatus2 of the United States Pharmacopoeia. The present study evaluated the DR technique investigating the drug release of the model compound flurbiprofen from drug solution and from nanoformulations composed of the drug and the polymer materials poly (lactic acid), poly (lactic-co-glycolic acid) or Eudragit®RSPO. The drug loaded nanocarriers ranged in size between 185.9 and 273.6nm and were characterized by a monomodal size distribution (PDI<0.1). The membrane permeability constants of flurbiprofen were calculated and mathematical modeling was applied to obtain the normalized drug release profiles. For comparing the sensitivities of the DR and the dialysis bag technique, the differences in the membrane permeation rates were calculated. Finally, different formulation designs of flurbiprofen were sensitively discriminated using the DR technology. The mechanism of drug release from the nanosized carriers was analyzed by applying two mathematical models described previously, the reciprocal powered time model and the three parameter model.


Asunto(s)
Portadores de Fármacos/química , Flurbiprofeno/química , Nanopartículas/química , Tecnología Farmacéutica/métodos , Química Farmacéutica/métodos , Liberación de Fármacos , Ácido Láctico/química , Tamaño de la Partícula , Permeabilidad , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácidos Polimetacrílicos/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...